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SUMMARY & CONCLUSIONS 

The veracity of information (i.e., its quality of being and 
remaining true, accurate, and complete) is a pillar of efficient 
risk management.  The informative capacity of the data on 
which the risk management process relies needs to be fully kept 
across the entire information pipeline in order to ensure that risk 
can be properly understood and managed.  Unfortunately, 
research shows that the informative capacity of data may - 
partially or entirely - be lost between the generation and the 
final use of a piece of information.  This problem starts with the 
capture of information, where inconsistencies may already be 
observed between the reality of a phenomenon and the data 
supposedly reporting its measurement.  As a consequence, this 
can lead to inadequate decision making when answering a risky 
event and, thus to a critical escalation of the situation.  Such 
circumstances have been reported as contributing factors in 
several well-known large-impact accidents (e.g., Three Mile 
Island, 1979; BP Texas City Refinery, 2005; Deepwater 
Horizon, 2010) and continue to be faced in high-risk 
infrastructures nowadays.  

The multiplication of information sources made available 
through advances in the Internet of Things (IoT) and digital 
fields offers an opportunity to address this issue, as more and 
more data sources can be used to confirm a single fact.  That 
way, decision-makers can better detect inconsistencies in the 
data used for risk analyses and apply appropriate corrective 
actions.  However, this comes with several challenges.  Firstly, 
conventional risk management approaches need to be rethought 
and restructured to enabling a dynamic updating of the risk 
picture as new information is made available.  Secondly, they 
need to enable a characterization of the information quality by 
providing details on the level of uncertainties related to the 
generated risk picture.  Thirdly, the data capture process needs 
to be properly understood in order to ensure that possible data 
corruption modes are correctly identified.   

This paper discusses the points above by focusing on the 
veracity of information during the capture of data for risk 
assessment purposes.  We discuss how multiple data sources 
may be managed to reduce uncertainties in this phase. A case 

study on the presence of vegetation close to power lines 
illustrates the related implications. 

1 INTRODUCTION 

Common risk assessments remain mostly focused on the 
processes themselves, assuming the existence of a reliable 
supporting infrastructure [1].  However, the information 
pipeline responsible for transmitting a piece of data from 
phenomenon observation to decision making (data capture, data 
transmission, data pre-processing, information processing, 
results transmission) represents a complex system of systems, 
which all can be a source of data corruption eventually leading 
to an inadequate decision making.  Corruption is here 
understood as the possibility for a piece of information to lose 
its veracity, i.e., its quality of being and remaining true, 
accurate, and complete.  Different major accidents can be used 
to illustrate the important consequences of a degraded 
information management process.  In the Three Mile Island 
accident (1979), decision-makers have built their reasoning and 
took action in an emergency situation based on inaccurate 
information, being informed that automatic safety procedure 
had been successfully executed, while they were not [2].  
Misreading of pressure information and ignoring of warnings 
about cement weaknesses were also some of the root causes 
responsible for the Deepwater Horizon catastrophe (2010), the 
biggest offshore oil spill in US history [3].  Additional events 
happening in between the Three Mile Island accident and the 
Deepwater Horizon catastrophe (e.g., the BP Texas City 
Refinery accident in 2005 [4]) are other illustrations of 
accidents showing that a piece of information may: 
• not have been generated (e.g., sensors not working), and/or 
• have been generated in an inappropriate way (e.g., sensors 

generating false information), and/or  
• have been wrongly transported and distributed (i.e., 

telecommunication network failure), and/or  
• have been treated by inappropriate analysis methods (e.g., 

outdated algorithm utilization), and/or  
• have been wrongly interpreted by operators (e.g., human 

errors: making wrong decisions despite receiving the 
correct information in the right format). 

978-1-7281-8017-5/21/$31.00 ©2021 IEEE

20
21

 A
nn

ua
l R

el
ia

bi
lit

y 
an

d 
M

ai
nt

ai
na

bi
lit

y 
Sy

m
po

si
um

 (R
A

M
S)

 | 
97

8-
1-

72
81

-8
01

7-
5/

21
/$

31
.0

0 
©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

R
A

M
S4

80
97

.2
02

1.
96

05
73

7

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 24,2023 at 10:34:01 UTC from IEEE Xplore.  Restrictions apply. 



There is thus a need to increase attention on the gathering, 
transmission, and processing of information to ensure higher 
reliability of risk management processes.  This topic becomes 
even more relevant in today’s era of big data, where more and 
more digital information is made available and considered for 
risk management.  Although the veracity of data is discussed in 
the literature for different applications, implications from the 
perspective of risk assessment have not yet been thoroughly 
examined. The present paper addresses thus this topic during 
the first step of the information chain used for risk assessment 
- data acquisition - through:  
(1) the understanding of the implications and adaptation 

requirements for conventional risk approaches to fully 
integrate the veracity dimension in the risk assessment 
process; and  

(2) discussing a framework for enabling the management of 
existing data sources so that a more reliable risk assessment 
can be executed. 
This paper first revisits risk fundamentals in Section 2, 

clarifying the concept of Dynamic Risk Management (DRM), 
and highlighting the importance of reliable data acquisition for 
this purpose. It then builds on approaches typically used for data 
validation to integrate the veracity of information into 
conventional risk assessment approaches in Section 3. Finally, 
Section 4 presents a case study on vegetation management for 
power grids risk assessment. The presence of vegetation in the 
surrounding of power lines significantly impacts the probability 
of outage in power grids, and power grid outages can have on 
serious impact on modern societies. 

2 FUNDAMENTALS 

2.1 Risk Definition 

One of the most renowned definitions of risk was given by 
Kaplan and Garrick [5].  It states that risk (R) can be expressed 
by what can go wrong (scenario s), what likelihood it will have 
(probability p), and how severe consequences will be 
(consequence c): 

𝑅𝑅 = 𝑓𝑓(𝑠𝑠,𝑝𝑝, 𝑐𝑐)    (1) 
On the other hand, several review articles [6–8] collect 

parallel risk definitions from the scientific literature to 
demonstrate the multiplicity of perspectives on the 
understanding of the concept of risk.  In [9], the risk is defined 
as an uncertain consequence of an event or an activity with 
respect to something that humans value.  For [10], Risk equals 
the expected loss.  And for [11], the risk is the potential for 
realization of unwanted, negative consequences of an event.  

There is thus not one single approach, but several paths 
leading to relatively different results, which may be all 
beneficial but intrinsically incomplete.  This is demonstrated by 
the occurrence of major accidents whose scenarios were 
disregarded by safety reports because being deemed improbable 
[12].  As an attempt to provide a more comprehensive risk 
definition, Aven and Krohn (2014) suggest including 
knowledge (k) as a new dimension in the original definition (1):  

 𝑅𝑅 = 𝑓𝑓(𝑠𝑠,𝑝𝑝, 𝑐𝑐, 𝑘𝑘)                         (2) 

Here, this definition is retained due to the strong overlap 
existing between the concepts of knowledge and veracity. Its 
use is further detailed in Section (3). 

2.2 Risk Management 

Several examples of frameworks addressing risk 
management or governance may be found in standards and 
related contributions in literature [14]: i) “Risk management: 
guideline for decision makers” by the Canadian Standard 
Association (standard CSA Q850-97) [15]; ii) “Risk 
management: principles and guidelines” by the International 
Organization for Standardization (standard ISO 31000:2018) 
[16]; iii) “Risk governance framework” by the International 
Risk Governance Council [9]; and “Risk and emergency 
preparedness assessment” by the Norwegian petroleum 
industry (standard NORSOK Z-013) [17]. 

The mentioned risk management frameworks unanimously 
address the following steps: pre-assessment, risk assessment, 
tolerability/ acceptability judgment, risk management, and risk 
communication.  Treatment of uncertainties is also emphasized, 
and different related practices are suggested.  ISO 31000 
defines risk as uncertainty to achieve an objective [16].  The 
IRGC framework [9] distinguishes between uncertainty and 
ambiguity.  Uncertainty refers to a lack of clarity over the 
scientific or technical basis for decision making, whereas 
ambiguity gives rise to several meaningful and legitimate 
interpretations of accepted risk assessment results.  Ambiguity 
may refer to potential different values leading to a variety of 
interpretations. 

Uncertainties can arise at different levels and moments of 
the risk management process, and they may be related to data, 
models, or the decision-making phase.  Most of the risk 
management frameworks invite to consider and acknowledge 
all forms of uncertainties, not only technical but also social.  
Decision making under uncertainty usually relies on the 
consideration and comparison of multiple scenarios, therefore 
requiring continuous improvement to maximize the likelihood 
of appropriate judgments.   For instance, in the presence of 
emerging risks, differences among actual and expected results 
are likely, due to limits in experience and knowledge.  The 
introduction of continuous improvement is thus fundamental in 
order to proceed towards effective and efficient risk 
management. 

Constant monitoring supports continuous improvement, 
which is already a recurrent step in the risk management 
frameworks presented.  However, there are very few references 
on what and how to monitor or measure.  The monitoring 
process is often related to the level of achievement of objectives 
or to the adequacy of assumptions with observed consequences.  
While on the contrary, the IRGC framework insists on the 
monitoring of [9]: equity in the repartition of risks and benefits 
among different categories of populations; and transparency 
and availability of information for various stakeholders. 

2.3 Dynamic Risk Management  

DRM has an evident focus on the concept of risk.  
However, one should not be misled into thinking that this 
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domain aims at managing “dynamic risk.”  Analogously to 
dynamic risk analysis [18], it refers to the management process 
that is designed to dynamically handle the risk of a system.  One 
important role of DRM is the conversion of the traditionally 
static process of risk analysis into a dynamic technique with the 
capacity to be regularly updated.  This should include a 
common understanding of tolerability and acceptability of risk 
levels and a clear operational scope [19].  Despite its relevance, 
the frequency of updates of the process falls outside the purely 
methodological scope of this research [18].  DRM refers to the 
risk management frameworks (DRMF) designed to be dynamic, 
which optimally enables restructuration, updates, and iterations 
when needed.  Whether a DRMF updates instantaneously, 
yearly, or every decade, it will always keep its dynamic 
characteristic as it is independent of the actual use.  On the 
contrary, non-DRM still has the possibility to be updated but 
with considerable inertia leading it to require substantial efforts, 
time, and energy by appointed teams of experts and managers.  

An illustrative example can be made by means of computer 
software coding.  When a software code is meant to be updated 
based on the inputs provided while running, its structure and 
characteristics should be defined and designed accordingly.  
One can say that this software code is dynamic.  When, instead, 
a software code does not accept any input for the sake of 
updates while running, the only option is modifying the lines of 
code that we want to be changed.  We can define the latter code 
as static.  Its update is still possible, but it requires increased 
effort and knowledge as it was not designed for it. 

Thus, if we need to understand whether risk management 
can be considered dynamic, we should ask ourselves whether it 
was intended and designed to be dynamic, as this characteristic 
must be taken into account in the scope definition, i.e., the very 
first phases of its development. 

2.4 Role of data acquisition in Dynamic Risk Management 

Modern data acquisition refers to the process of sampling 
measurements of a physical phenomenon and converting this 
into a digital value exploitable by a software.  This is usually 
done using sensors, converters, transmitters, and/or other 
transmission devices, forwarding the data to an analytical or 
archiving unit for post-acquisition data processing and/or 
storing.  Manual reporting of information and information 
extraction from existing databases are usually not considered to 
be part of the data acquisition process.  However, this is 
generally done in the field of risk management, considering the 
limited amount of information that can be met when dealing 
with rare events, as well as the importance of human operators 
in the management of high-risk infrastructures.  

Here, the process of data acquisition can thus be defined as 
requiring: 
• The acknowledgment of the parameter to analyze, 
• The identification of the data sources to be considered 

(measuring device, database, personnel, etc.), 
• The capture of the raw data and the initialization of the 

information transmission. 
Although data acquisition may have been considered as part of 
the risk influencing factor (RIF) “design” in the ORIM [20] or 

“System feedback” in the BORA [21], it is, to the best of the 
authors’ knowledge, never considered individually as a RIF, 
and thus never addressed in detail.  This is particularly 
problematic, as the data acquisition process can be failing in 
different ways.  For example: 
• data may not be generated (e.g., inactive hardware or 

hardware failure), 
• data may be corrupted (e.g., sensors with false indications), 
• considered databases may be outdated,  
• data may be available, but not correctly transmitted (e.g., 

data directed to the wrong endpoint, lack of authority 
hindering communication in the control team), 

• data may be available, but face compatibility issues 
between devices (e.g., different protocols, language, 
hardware). 

Detecting and acknowledging the occurrence of such issues in 
real-time is critical to maximizing the probability of good 
decision making in risk management.  Traditional risk 
management approaches need thus also to be reshaped 
regarding the possibility of data corruption in order to integrate 
detection and acknowledgment by design, which is another 
dimension aimed to be covered by DRM. 

3 CONFIRMATION FACTOR FOR VERACITY 
ASSESSMENT 

Expressing the level of knowledge (k) used for risk 
assessment, as suggested in Formula (2), is an intrinsic feature 
of the calculated value of risk.  We can tolerate having relatively 
little knowledge of scenarios with both low probability and low 
consequence.  On the other hand, knowledge is critical when 
the probability and consequences of an event have their highest 
values.  Formula (2) gives important insight into how we should 
manage risk while continuously improving.  As mentioned by 
several risk management frameworks [14], it should be 
acknowledged that uncertainty is always a companion [22].  
Calibration and correction based on new evidence will possibly 
allow for decreasing this uncertainty and accounting for 
evolving system conditions.  

Current trends in the IoT and digital fields allow for the 
assumption that the average number of data sources per 
parameter observed is likely to increase in the future.  Three 
generic situations may then be encountered when assessing how 
much the data sources agree on the forwarded information: 
1) Absence of alternatives: only one data source is available 

to inform about a specific parameter.  In such a situation, 
there is no better option than to fully rely on the only 
existing data source.   

2) Confirmation of information: all data sources agree on the 
information to forward, and the value of the knowledge is 
increased as the number of data sources increases. 

3) Conflicting answers: at least two data sources provide 
conflicting information.  In that situation, further 
recommendations need to be provided to decide how to 
handle available information in the risk analysis.  

As a consequence, we thus suggest to further characterizing the 
“strength of knowledge” as reported by Aven and Krohn by 
splitting the knowledge dimension into two indicators (Formula 
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(3)) to qualify the veracity of information.  The first one simply 
indicates the number (N) of sources available to inform a 
specific observed parameter.  The second indicator corresponds 
to a veracity indicator (v), capturing the agreement level across 
the considered data sources, a common approach for data 
validation and reconciliation [23]. 

𝑘𝑘 = 𝑔𝑔(𝑁𝑁, 𝑣𝑣)           (3) 
The number of data sources (N) is reported, as a higher 

value of (N) would generally imply a higher likelihood that the 
real status of the observed phenomenon can be captured, 
especially in the case where the information originates from 
independent data sources of different nature.  The nature of the 
veracity indicator (v) is based on the nature of the objective 
function (i.e., categorical, discrete, continuous, etc.), which 
needs to be clarified in the first phases of the risk analysis.  One 
needs then to define the trust level to assign to each data source, 
based on a priori knowledge indicating the reliability level of 
the source.  In the absence of relevant side information, an 
identical trust level will be given by default to the different data 
sources.  Finally, a combination rule needs to be chosen to 
calculate the value of the veracity indicator.  

A simple illustration can be the use of (N) binary data 
sources (ai), characterizing the same specific situation (e.g., 
presence or absence of a hazard in a specified area).  Assuming 
the similar level of trust for all data sources and independence 
across their acquisition modes (i.e., no common source of 
corruption), one may choose a simple averaged value to define 
how likely reported information is to be true: 

𝑣𝑣 =
� 𝑎𝑎𝑖𝑖

𝑁𝑁
𝑖𝑖=1
𝑁𝑁

, 𝑎𝑎𝑖𝑖 Є {0,1}                       (4) 

In this situation, the class maximizing the value of (v) may 
logically be chosen to report the status of the observed 
phenomenon [24].  Additionally, the value of (v) will enable to 
better characterize the level of uncertainty existing around the 
probability dimension reported in Formula (2).  However, other 
situations may be more complex [25] and require a different 
decision rule, such as counting rules (where at least (M) out of 
(N) sources need to agree) or linear combinations of the 
individual data sources, useable when additional information on 
the reliability of the sources is available.  Linear combinations 
of individual data sources usually outperform simple rules (like 
the counting rule), while simple rules do not require anything 
more than monitored information.  Finally, discrete scenarios 
with more than 2 choices and/or fuzzy scenarios where situation 
evolution may be continuous instead of discrete would also 
impact the final choice for the decision rule.  This decision 
needs thus to be appreciated on a case-by-case reasoning in the 
first steps of any risk analysis. 

4 CASE-STUDY: VEGETATION MANAGEMENT IN 
POWER GRIDS 

4.1 Context & Data 

Overhead power lines are broadly used to transport power 
from production sites (e.g., dams, nuclear power plants or coal 
power plants) to consumers (e.g., industrial, commercial, and 

residential customers).  Vegetation represents a main source of 
hazards worldwide in the management of those power lines 
[26].  Two principal unwanted scenarios (s) can indeed be 
identified with this regard: either (1) tree/branch falls on power 
lines, or (2) vegetation growth under the infrastructures.   In 
both cases, the probability (p) of outages escalates when the 
distance from vegetation to the power lines decreases, as 
shortcuts due to connections between different phases are more 
likely.  The consequences (c) can then be particularly important, 
as this can lead to wildfires and even large blackouts [27].  
Distribution System Operators (DSOs) and Transmission 
System Operators (TSOs) – in charge of the power grid 
management – require, therefore, to be informed about the 
presence of vegetation in the surrounding of their grids in order 
to take adequate maintenance decisions.  

Information relative to the assessment of vegetation 
presence close to power lines is traditionally obtained during 
visual inspections, which can be executed via foot patrols, 
helicopters, and the use of drones.  Light Detection And 
Ranging (LiDAR)-based point clouds are also commonly used 
to obtain 3D insights, allowing for precise distance 
measurements between power lines and other elements, such as 
trees.  Furthermore, photogrammetry-based point clouds are 
getting more and more attention in recent years as a more 
economical alternative to LiDAR point clouds.  Finally, the use 
of orthophotos (geometrically corrected satellite images or 
large scale aerial images) for efficient large-scale inspections is 
currently intensively explored [28], mostly pushed by the 
progress made in computer vision and the continuously 
increasing availability of satellite imaging technologies with 
higher resolution and more frequent coverage [29]. 

These sources of information can all be used to assess the 
threatening level of vegetation in the surrounding of power 
grids.  Figure 1 (a to d) illustrates how the presence of four small 
trees growing under a power line can be seen on a drone image 
(a), in a LiDAR point cloud (b), in a photogrammetry point 
cloud (c), and on an orthophoto (d).   

4.2 Application 

The current application principally focuses on the 
probability dimension of the risk definition.  We consider the 
binary case of presence/absence of threatening vegetation 
between subsections of the power grid (here, a section between 
2 consecutive power poles) as a simplified version of the 
original objective function focusing on exact distance 
measurement between trees and the infrastructure.  In the 
present situation, the different data sources agree on the 
presence of four trees growing under the lines, leading the 
veracity indicator (v) to equal 1.  Furthermore, considering the 
number (4) and the nature of data sources involved, we can 
confidently assume the information to be accurate.  The 
suggested formulation of the knowledge dimension enables thus 
to dynamically assess the pertinence of the provided probability 
that threatening trees are present under the lines.  It also enables 
to evaluate the impact of adding/removing data sources in the 
risk calculation by increasing/decreasing confidence in the 
provided results depending on the forwarded information.  
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Figure 1 (a to d) - Detection of four small trees (marked via 
red points) growing under a power line and reported via a 

drone image (a), a LiDAR point cloud (b), a photogrammetry 
point cloud (c), and on an orthophoto (d). 

5 DISCUSSION 

The choice and management of data sources to be considered 
for risk management remain challenging activities.  First, 
because the pertinence of a choice of data sources may change 
over time, e.g., due to a variation of the situation circumstances 
or to a variation in the quality of the acquired data.  Second, 
because the merging of heterogeneous data sources remains a 
complicated task [30].  For instance, source-specific 
weaknesses imply that not all data sources can be used for the 
same purposes.  The clarification of the objective function is 
thus critical to ensure that the chosen data sources properly 

support the resolution of the problem under review.  
Furthermore, regular revisions are required to ensure that the 
choice of data sources is continuously justified.  This is, 
however, hindered by the fact that the definition of the data 
acquisition process (and more generally, the entire information 
pipeline construction) is usually seen as a “once and for all” 
process.  This leads it to be often excluded from any serious 
system improvement plan, even though it has been recognized 
as a main contributing factor in major accidents.  Tracking the 
variations of the veracity indicator (v) can thus also be used in 
that sense as a lagging alerting indicator.  Once sources of 
disagreement have been identified, it can potentially reveal the 
need for removing initially chosen data sources that became 
irrelevant over time. 

The concept of independence across data sources also 
requires proper attention.  Data acquired from independent data 
sources but in a short period of time may all be outdated when 
considered in risk analysis, thus all confirming inaccurate 
information, potentially leading to inadequate decision making.  
This highlights the critical need for a proper definition of the 
reliability criteria of the data sources, for which levels need to 
be tracked over time.  Some factors influencing the reliability 
level of the sources (and thus the pertinence of the executed risk 
analysis) are, in addition to the choice of the sources, the 
environmental conditions during data capture, the data 
collection modes, the choices of technologies, the 
maintainability of the physical equipment, the exposition of the 
physical equipment to environmental hazards, the maintenance 
of the physical equipment and the communication network 
design.  Finally, the choice of the decision rule defining which 
values will eventually be reported in the risk analyses is a 
critical task that needs to be adequately executed by a panel of 
experts in the first phases of the studies and regularly reassessed 
to ensure its pertinence over time.  

6 CONCLUSIVE REMARKS 

Ensuring the veracity of information during the entire 
lifetime of risk management processes is of critical importance 
to guarantee the pertinence of the reported results.   
Conventional risk management approaches suffer from a lack 
of tools ensuring and controlling that data veracity can be kept 
over time.  DRM provides solutions to fill this gap by enabling 
the establishment of continuity in the risk management 
processes, facilitating their updates and reiterations when 
required.  This is supported by the rapid development of newly 
accessible data sources, made, for example, available via 
numerous IoT-based development strategies.  In the present 
paper, we suggested an approach to formalize the benefit that 
increased access to a plurality of diverse data sources can 
provide.  For this, we suggested extending the knowledge 
dimension of a relatively recent risk formulation, based on the 
number of data sources available and on veracity, indicator 
capturing the level of agreement across those sources.  We 
applied this approach in a case-study focusing on vegetation 
close to power lines, which is a common source of outages in 
power grid management.  We concluded that the approach was 
useful to confirm the presence of potentially problematic 

a 

b 

c 

d 
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vegetation in the analyzed case, but also pointed out that it is, 
in general, strongly dependent on both the formalization of the 
problem in initial phases and the quality of the data sources 
management over the entire life-cycle of the risk management 
processes. 
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